Exercise 46

In 2003, a town's population was 1,431. By 2007 the population had grown to 2,134. Assume the population is changing linearly.
(a) How much did the population grow between the year 2003 and 2007?
(b) How long did it take the population to grow from 1,431 people to 2,134 people?
(c) What is the average population growth per year?
(d) What was the population in the year 2000?
(e) Find an equation for the population, P of the town t years after 2000.
(f) Using your equation, predict the population of the town in 2014.
[TYPO: There needs to be a comma after " P " just like in the previous exercise.]

Solution

The population grew by $2134-1431=703$ between 2003 and 2007, a time interval of four years. The average population growth per year is the slope,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2134-1431}{2007-2003}=\frac{703}{4}=175.75 .
$$

In order to predict the population in 2000 and 2014, an equation of a line is needed. Let t be the number of years after 2000, and use the two points, $(3,1431)$ and $(7,2134)$. Use the point-slope formula with either of these points to get the equation of the line.

$$
\begin{gathered}
y-1431=175.75(t-3) \\
y-1431=175.75 t-527.25 \\
y=175.75 t+903.75
\end{gathered}
$$

To get the population in 2000, plug in $t=0$.

$$
y=175.75(0)+903.75=903.75 \quad \text { (about } 904 \text { people })
$$

To get the population in 2014, plug in $t=14$.

$$
y=175.75(14)+903.75=3364.25 \quad \text { (about } 3364 \text { people) }
$$

